The generator matrix

 1  0  1  1  1  0  1 X^2+X  1  1 X^2+X  1  1 X^2  1  1  1 X^2  X  0  1  1  1  X X^2  1  1  1  1  X  X  1 X^2  1  1 X^2  1  1  1  0  1
 0  1  1  0 X^2+X+1  1  X  1 X^2+X+1  X  1  1 X^2  1  0 X+1 X^2+X+1  1  1  1 X^2+1 X^2+X  0  1  1 X^2+1 X^2+1  0  X  1  1 X+1  1 X^2 X^2  1  X X+1 X^2+1  X  0
 0  0  X  0 X^2+X  X  0  X  0  X X^2  0  X  0 X^2+X X^2  X  X X^2+X X^2 X^2 X^2+X X^2 X^2  X  X X^2 X^2 X^2  0  0  0 X^2+X X^2  X  X X^2+X  X  0 X^2  0
 0  0  0  X  0  X  X  X X^2+X  0 X^2 X^2+X X^2  X  X X^2 X^2+X X^2 X^2  X  0 X^2+X  X  X X^2+X  X X^2+X X^2+X  0  X X^2 X^2 X^2+X  0  X X^2+X  0  0  0  X X^2
 0  0  0  0 X^2 X^2 X^2  0 X^2 X^2 X^2  0  0  0  0  0  0  0 X^2 X^2  0  0 X^2  0 X^2 X^2 X^2  0 X^2 X^2  0 X^2  0 X^2 X^2  0  0  0 X^2 X^2 X^2

generates a code of length 41 over Z2[X]/(X^3) who�s minimum homogenous weight is 36.

Homogenous weight enumerator: w(x)=1x^0+147x^36+68x^37+322x^38+132x^39+322x^40+120x^41+334x^42+120x^43+269x^44+68x^45+90x^46+4x^47+16x^48+18x^50+12x^52+4x^54+1x^56

The gray image is a linear code over GF(2) with n=164, k=11 and d=72.
This code was found by Heurico 1.16 in 0.146 seconds.